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We accurately measured white matter (WM) and gray
matter (GM) from three-dimensional (3D) volume stud-
ies, using a fuzzy classification technique. The new
segmentation method is a modification of a recently
published method developed for T1 parametric images.
3D MR images were transformed into pseudo forms of
T1 parametric images and segmented into WM and GM
voxel fraction images with a set of standardized fuzzy
classifiers. This segmentation method was validated
with synthesized 3D MR images as phantoms. These
phantoms were developed from cryosectioned human
brain images located in the superior, middle, and in-
ferior regions of the cerebrum. Phantom volume meas-
urements revealed that, generally, the difference
between measured and actual volumes was less than
3% for 1.5-mm simulated brain slices. The average ce-
rebral GM/WM ratio calculated from 3D MR studies in
four subjects was 1.77, which compared favorably with
the estimate of 1.67 derived from anatomical data. Re-
sults indicate that this is an accurate and rapid
method for quantifying WM and GM from T1-weighted
3D volume studies.

Index terms: Brain MR « Volume measurement « Image processing
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BRAIN TISSUE SEGMENTATION techniques have com-
monly been applied to images acquired by using two-di-
mensional (2D) MR acquisition techniques (1-15).
Neuroimaging researchers can use these brain tissue
segmentation methods to assess quantitatively, across a
population, both normal and abnormal brain variations.
The most common of these segmentation techniques is
multispectral analysis (1-9). Multispectral analysis uses
2D dual-echo (DE) MR studies. DE acquisitions, consist-
ing of proton-density weighted (PDW) and T2-weighted
(T2W) images, are used because they are spatially regis-
tered and provide distinct parameters or features that
can be used to define the multispectral space needed for
cluster analysis. Clarke et al (16) reviewed numerous
classification schemes, including multispectral analysis,
for segmenting brain tissues. Many classification meth-
ods, including multispectral analysis, use some form of
fuzzy classification (5,8-15). Fuzzy classification, in con-
trast to crisp or hard classification, subdivides the con-
tents of a voxel's volume into different tissue classes.
Therefore, fuzzy classifiers can better model a critical
physical limitation of imaging, partial volume averaging,
that confounds the segmentation process. The research
presented in this paper is based upon a recently reported
fuzzy classification method used to measure white matter
(WM) and gray matter (GM) volumes with T1 parametric
images (15).

Previously, WM and GM fuzzy classifiers (FCs) were de-
signed that modeled the fuzziness inherent in the
WM/GM and GM/cerebrospinal fluid (CSF) boundaries
in T1 parametric images by modeling partial volume ef-
fects due to slice thickness and intrinsic tissue inhomo-
geneities (15). A single standard set of FCs was used to
quantify brain tissue volumes from the entire population
of subjects. Image data were adapted to the standard
fuzzy classifiers instead of the classifiers being adapted
to the data. Results from phantom image measurements
supported this adaptive scheme (15). The integration of
this adaptive scheme with partial volume accommodation
resulted in a process whereby the standardized FCs could
be used to rapidly and accurately segment WM and GM
structures.

The research presented in this paper was motivated by
the desire to adapt the standard T1 classification method
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to work with T1-weighted {T1W) 3D volume images. For
this study, WM and GM volumes were quantified from
images acquired with a 3D spoiled-gradient-recalled
echo-pulse sequence (SPGR). The 3D SPGR volume ac-
quisition mode was selected for volume quantification
because it provided good WM/GM contrast, and the spa-
tially contiguous 1.5 x 0.9375 X 0.9375 mm?®, voxels
greatly reduced partial volume-averaging effects at tissue
boundaries, compared with 5-mm-thick conventional
spin-echo images. The results of this 3D SPGR segmen-
tation method were validated in three different ways. The
first validation method was a comparison of calculated
and known volumes, using phantom data. In this paper,
“phantoms” refer to synthesized MR images of the brain,
not physical objects. The second validation was a com-
parison of human brain tissue volumes measured from
1.5-mm-thick 3D SPGR images to volumes measured
from the same individual by a previously published
method that works with 5-mm-thick T1-calculated im-
ages (15). The third validation was a comparison of WM
and GM volumes measured from MR images to WM and
GM volumes acquired from anatomical studies.

® MATERIALS AND METHODS

Fuzzy Classifiers for 3D Volume Acquisitions

FCs were modeled as a combination of hard classifiers
bounded by half-Gaussian functions. The hard classifiers
model the intrinsic inhomogeneity of brain tissues and
the half-Gaussians model the partial volume averaging
that occurs at the WM/GM and GM/CSF interfaces (Fig.
1). Previously, FCs were developed for only 1-, 3-, and 5-
mm slices (15). The same procedures were used to de-
velop the 1.5-mm FCs required for this study. Parameters
u (mean of the half-Gaussian fits) and o (standard devi-
ation of the half-Gaussians) from the 1- and 3-mm FCs
(Table 1) were used as initial values for development of
the 1.5-mm FCs with T1 phantom images. Development
of the FCs was an iterative process (varying both p and
o) that minimized the difference between the measured
and known phantom volumes. FCs have been developed
for 1-, 1.5-, 2-, 3-, and 5-mm slices. These FCs and the
templates used to make the phantom images are at our
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web site!, FCs can be developed for slice thicknesses not
available by linearly interpolating between parameters
from two adjacent FCs.

This classification method uses FCs designated as
FCyn FCau» and FC.q in Equations [1] through [3] to
segment WM, GM, and CSF. The 1.5-mm CSF FC of Fig-
ure 1 was calculated by subtracting the upper half-Gaus-
sian of the 1.5-mm GM FC from unity, as shown in
Equations [2] and [3].

FCyn(T1) = O; Tl <a
=1 asTL<b [
= exp[—(T1 — wW?/¢?; b<Tl<c
=0 Tl>c
FCou(T1) = 05 Tl <b
= 1.= FCyu(T1); b<Tl <c¢
=1 ' c<Tl<d [2]
= exp[—(T1 — p)*/c?; d<Tl<e
=0 Tlze
FCee(T1,) = O; Tl <d
=1 — FCqy (T1) d<Tl <e (3]
=1 Tlze
where a, b, ¢, d, and e are parameters in the mathemat-

ical models of the FCs. These parameters are the end
points for the half-Gaussian models that consist of WM,
GM, and CSF FCs. For example, end-point d is the largest
GM T1 value with unity membership in the GM FC,
whereas, e is the largest GM T1 value with non-zero
membership in the GM FC. The end-point parameters for
the 1.5-mm WM and GM FCs (a, b, ¢, d, and ¢) are illus-
trated in Figure 1 and listed in Table 1. In addition, end-
point parameters for the 1-, 3-, and 5-mm FCs are also
listed.

! Binary template images of WM, GM, and CSF used for building phantom
images are available for download at hitp://ric.uthscsa.edu/projects.
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Table 1
White Matter and Gray Matter Fuzzy Classifier Para-
meters for Equations 1 and 2

FCi(T1) m s a b c d e

WM at 5 mm 700 128 370 710 1080
WM at 3 mm 720 83 370 730 970
WMat1.5mm 730 55 370 740 900
WM at 1 mm 740 42 370 750 860

GM at 5 mm 1240 575 710 1080 1250 2990
GM at 3 mm 1400 545 730 970 1410 2770
GMat 1.5 mm 1680 200 740 900 1690 2290
GM at 1 mm 1780 100 750 860 1790 2090

Note.—All T1 values are in milliseconds. m = half-Gaussian
mean. s (standard deviation) defines the extent of the half-
Gaussian fits. a-e are boundary parameters for the optimized
WM and GM fuzzy classifiers.

Pseudo-T1 Parametric Space

The previously reported fuzzy classification method
used T1 parametric data (15). Calculating T1 parametric
images directly from a single 3D SPGR MR study is not
possible; however, a mathematical transformation was
used to map 3D SPGR images to approximate forms of
T1 parametric images. This transformation enables the
application of the standard FCs to the 3D SPGR volume
images.

. Images are transformed with an analytic solution to
Bloch's equations for the SPGR pulse sequence (Equation
[4]) (17). Equation [4] is used to approximate the MR sig-
nal for a SPGR pulse sequence given the acquisition
parameters (TR, TE, and 6) and the tissue parameters (T1
and T2¥).

S=P 1 - e i TE/T2*

D 1 — cos fo sin be 4]
where S is the image signal intensity, TR is the repetition
time, TE is the time to echo, 8 is the flip angle, PD is the
proton density, T1 is the longitudinal relaxation time,
and T2* is the effective transverse relaxation time. How-
ever, there are three unknown parameters in Equation
[4]; therefore, T1 cannot be directly calculated from a
single image. Equation {4] is simplified by incorporating
PD and T2* effects into the variable S' (Equation [5]).

, l — e—'l‘R/'l‘l X
$S=S T~ cos fe /M sin 0 [5]

This redefinition step is performed because S' can be
approximated so that a pseudo form of T1 images can be
calculated.

S' and T1 are the unknown variables in Equation [5].
However, expected T1 values for WM, GM, and CSF are
known. Regions of interest (ROIs) are selected to measure
the average signal value within WM, GM, and CSF. In
addition, S can be approximated within ROI, using the
average signal for a tissue (S) and the expected value of
T1 for that tissue (T1}). The resulting pseudo form of S, is
designated S;, (Equation 6).

. S,(1 — cos Bel-TR/T1)
SP{ = ~

(1 — &™) gin § S 161
where S, is the average signal value obtained from an ROl
placed in the tissue of interest, i. T1, is defined as the
expected value of T1 for tissue i. The expected T1 values
for WM, GM, and CSF at 1.5 Tesla are 650, 975, and
3,600 msec, respectively. These expected WM and GM T1
values were based on 19 human T1 studies. Calculated
values for CSF were widely variable. Therefore, the target

T1 value of 3,600 msec was selected for CSF. This value
was considered representative of a normal population,
because CSF is water-like (18}.

S, is used in Equation [5], in place of S, and is rear-
ranged to calculate T1 using Equation [7]. This approach
guarantees that brain tissue signal values map to their
expected T1 values. It yields only valid T1 approximations
for the targeted tissue. Therefore, T1 values calculated
with S;, values are designated pseudo-T1 values or Tl
values, as shown in Equation [7] (r is the voxel index).
The mean pixel values of WM, GM, and CSF are mapped
to their expected mean T1 values in what are termed
WM-, GM-, and CSF-weighted images, when using Equa-
tion [7].

1, (A = R (7]
( S(n — S, sin 6 )
S(r) cos 6 — S, sin 6

Three T1, images are calculated from each 3D SPGR
image. These images are called tissue-weighted images
because of their dependence on S,. Typical signal-to-
noise ratios (SNR) for WM and GM in the WM- and GM-
weighted images were 21 and 17, respectively. These are
better than, but similar to, the WM and GM SNRs (16 and
10) in the phantoms used to develop the FCs.

The T1 FC method uses tissue-weighted T1P images to
extract voxel fraction (VF) images. Pixel values in VF, im-
ages are estimators of the fraction of tissue i present in
the corresponding voxels. The creation of VF, images is
illustrated in Figure 2 and is accomplished in four steps:
(a) subject normalization, (b) segmentation, (c) voxel vol-
ume correction, and (d) classification correction. Each of
these steps is discussed in detail below.

Subject Normalization

A standard set of FCs is used with all subjects’ images,
requiring that image data be adapted to the classifiers,
using Equations [6] and [7]. This normalization maps a
single tissue class in each 3D SPGR image to the stan-
dard reference tissue class in T1 space. WM, GM, and
CSF, as defined by the operator, are mapped to the stan-
dard reference values of 650, 975, and 3600 msec, re-
spectively. '

Subject normalization of each 3D SPGR image data set
requires that an operator select three ROIs that are rep-
resentative of the WM, GM, and CSF. Figure 3 illustrates
the recommended locations of ROIs used to designate tis-
sue samples with negligible partial volume averaging.
WM, GM, and CSF means from these locations were pro-
vided for both accurate and reproducible volume meas-
urements in human and phantom data.

Voxel Volume Correction

Voxel volume correction ensures that the total tissue
fraction in each voxel is not greater than unity. A con-
straint of the FC method is that a voxel can contain at
most two tissues, and the total of the tissue fractions
must be unity. This is reflected in the FCs that sum to
unity for any T1 value (Fig. 1). This requirement holds
when VF images are calculated from a single parametric
T1 image; ie, three VF images are calculated directly from
the same T1 image (15). However, this requirement is of-
ten violated when WM, GM, and CSF VF images are cal-
culated from three independent images (WM-, GM- and
CSF-weighted T1P images, as shown in Fig. 2), because
the corresponding voxels can have different T1 values. To
correct for this, corresponding voxels from WM, GM, and
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Figure 2. Processing streams for calculating voxel fraction images from 3D SPGR images. (a) Subject images are normalized to the
standard set of fuzzy classifiers by calculating WM-, GM-, and CSF-weighted images. (b) Tissue-weighted images are segmented using
the standard fuzzy classifiers (FCs). (e) Voxel volume content is corrected so that no voxel contains more than 100% of two tissues.
This step reveals the contour of the cortex. (d) Tissue misclassifications, many of which are obvious in the segmented images of step

(c), are corrected.

CSF VF images, with tissue fractions summing to greater
than unity, were normalized to unity.

Classification Correction

WM, GM, and CSF misclassifications commonly occur
as a result of this voxel volume normalization step. Ob-
vious misclassifications of GM in known WM regions are
apparent in Figure 2 at the voxel volume correction step.
Numerous WM-only voxels were misclassified as contain-
ing both WM and GM. Reclassification of such WM voxels
was accomplished by thresholding the WM VF image. The
threshold was selected to ensure that the bulk of mis-
classified WM voxels were accurately reclassified.
Threshold selection can be made from histograms cal-
culated from ROIs placed in the WM images at the voxel
volume correction step. These ROls should be placed
away from tissue borders, as illustrated by the oval ROIs
in Figure 3. These histograms generally reveal bimodal
distributions. The two peaks correspond to voxels filled
or partially filled with WM. These partially filled voxels are
reclassified to 100% WM by thresholding. An adaptive
threshold was not required, because the lower modes
were invariably above .5. Preliminary results indicate
that a fixed threshold works well with 3D SPGR data ac-
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quired from different MR imaging systems with different
flip angles. Therefore, this step was implemented auto-
matically, using a threshold of .5, which worked well on
all 3D SPGR data acquired from all subjects evaluated.

This thresholding step modified the fuzzy classification
of WM by assigning WM voxel fractions above the thresh-
old to unity. All corresponding voxels in the GM VF image
are reclassified by setting their voxel fractions to zero to
ensure voxel volume normalization. Similarly, voxel val-
ues in the CSF VF images above the threshold were re-
classified by setting their voxel fractions to unity and the
corresponding voxel fractions in the GM VF images to
ZEero.

The steps used to measure WM and GM from 3D SPGR
images by the pseudo-T1 method were: (a) Perform sub-
ject normalization on SPGR images by transforming them
into WM-, GM-, and CSF-weighted T1P data. (b) Segment
WM, GM, and CSF from the subject-normalized T1P data
into voxel fraction images, using the standard fuzzy clas-
sifiers in Figure 1. Perform (c) voxel volume correction
and (d) classification correction of voxel fraction images.
At the beginning of step a, an operator obtains mean tis-
sue values from ROIs drawn in the WM, GM, and CSF
regions. These mean tissue values are used to calculate
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Figure 3. Human brain 3D MR SPGR images. WM and CSF ROlIs are illustrated in the axial image containing the ventricles. GM ROIs
are placed in the axial image containing the head of the caudate and the putamen.

tissue-weighted images completing the subject normali-
zation step. Steps b, ¢, and d (segmentation, voxel volume,
and classification corrections) were fully automated.

Validation

Three validation techniques were used to test the
pseudo-T1 segmentation method. The first approach was
to compare volumes calculated from the synthesized
phantom images to their known volumes. The second val-
idation technique—calculated from the same human
subject—compared the brain tissue volumes obtained by
the pseudo-T1 method, as presented in this paper, with
the previously published T1 method (15). Finally,
GM/WM ratios calculated from MR data were compared
with the GM/WM ratios calculated from anatomical data.

Phantoms simulating 3D SPGR images from the supe-
rior, middle, and inferior regions of the cerebrum were
developed by previously described procedures for T1
phantoms (15). These phantoms were created from hu-
man cryosection brain images to ensure anatomical re-
alism. Three sets of 3D SPGR phantom images (with low,
mid, and high signal values) were developed to test the
segmentation method across the full range of human 3D
SPGR data acquired from 34 normal subjects. Intrinsic
WM, GM, and CSF inhomogeneities were modeled in each
phantom image set by filling tissue ROIs with mean tis-
sue signal values and zero-mean gaussian noise corre-
sponding to tissue measurements collected from human
image data (low, mid, and high signal values). Partial vol-
ume averaging effects were modeled in the x, y, and z
directions as previously detailed (15). These 3D SPGR
phantoms were used to evaluate volume measurements
by the new FC method over a wide range of expected im-
aging conditions.

T1-weighted image data sets were acquired ona GE 1.5
Tesla Signa scanner using a 3D SPGR pulse sequence.
The pulse sequence was a volume acquisition, with TE =
5 msec, TR = 24 msec, flip angle = 45°, and one excita-
tion. Each acquisition contained 128 256 X 256 images

with 24-cm fields of view and 1.5-mm-thick slices. Non-
brain tissues were segmented from the 3D SPGR image
data sets, using a semiautomatic algorithm, before ap-
plication of the FC method. Manual editing was used to
remove nonbrain tissues that had voxel values similar to
brain voxel values, eg, where the optic nerves connect to
the brain.

WM and GM volume measurements were made from
the same person, using the pseudo-T1 method presented
in this paper and the previously published T1 method
{15). The pseudo-T1 method used images acquired with
the 3D acquisition protocol. The T1 method used a con-
ventional spin-echo protocol to calculate T1 images. The
256 X 256 MR images used to calculate T1 parametric
images were also acquired with a GE Signa 1.5-T MR im-
ager. The slices were 5-mm thick with a 1.5-mm gap and
a 24-cm field of view. The spin-echo acquisition protocol
was TE = 20, TR = 500 for T1W images, and TE = 30
and 80 with TR = 2,400 for the DE images.

The fuzzy segmentation software was written as a C-
coded moduie within the Digital Imaging Processing Sta-
tion (DIPS) version 1.6 software package (Hayden Image
Processing Group, Boulder, CO). WM or GM images were
subject normalized and segmented from 256 X 256 3D
SPGR images in approximately 15 seconds on a Macin-
tosh Quadra 840AV. This Quadra 840AV uses a Motorola
68040 microprocessor running at 40 MHz and has 32
megabytes of RAM.

¢ RESULTS AND DISCUSSION

The pseudo-T1 segmentation method presented in this
paper was validated with three sets of phantoms. These
phantom image sets (low, mid, and high signal values)
were chosen to test the method’s adaptability to signal
variations across a population. In addition, this method
was tested by comparing volume measurements from the
same subject as scanned by two different protocols and
segmentation methods. A final validation was performed
by comparing human WM and GM volumes measured
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Figure 4. 3D human MR image with WM and GM voxel fraction images.

from MR images to volumes measured from anatomical
data. These human MR data sets were selected because
they represented the extent of signal variation in our pop-
ulation.

The previously described method used to calculate the
T1 parametric images for the T1 FC method requires
three sets of nonparametric images (T1W, T2W, and
PDW) (15). In contrast, the pseudo-T1 FC method pre-
sented in this paper is based on a single nonparametric
image, although three intermediate images (WM-, GM-,
and CSF-weighted images) were synthesized to produce
VF images. WM and GM VF images were calculated from
human and phantom 3D SPGR images. Samples of these
human and phantom 3D SPGR images, along with their
VF images, are shown in Figures 4 and 5. The 3D SPGR
phantom image is shown to illustrate the similarity be-
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tween the 3D SPGR phantom and human images. The
segmented human WM and GM images are qualitatively
appealing and quantitatively accurate, as determined by
results from phantom volume measurements.

Phantom volume measurements show the average rel-
ative error as approximately 2% for WM and 3% for GM
(Table 2). Relative errors overall were slightly higher in
the superior slices than in the inferior and middle slices.
This difference probably results from the increased par-
tial volume averaging between WM and GM in the supe-
rior regions of the brain. Notably, errors due to partial
volume averaging along the edges of the ventricles were
automatically reduced in the middle and inferior slices
by the classification correction step. Partial volume-av-
eraged WM and CSF voxels appear as GM voxels at the
ventricle edges. Many of these misclassified GM voxels
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Figure 5. 3D phantom MR image with WM and GM voxel fraction images.

are reclassified into WM and CSF voxels during step 4 of
processing. Phantom volume measurements were accu-
rate for different slices as well as for different signal val-
ues (Table 2). Absolute volume errors, on a slice-by-slice
basis, were generally less than 0.2 ¢cm? for WM and 0.4
cm?® for GM. GM error rates are slightly higher, because
GM partial volume averages extensively with WM and
CSF, whereas, predominately, WM partial volume aver-
ages only with GM.

GM/WM volume measurements obtained from the
same person by the T1 (spin-echo data) method were 646
cm?/347 cm® (= 1.86) and for the pseudo-T1 (3D data)
method were 625 ¢cm?/352 cm® (= 1.78). GM and WM
volumes measured from the 3D images were 3.3%
smaller and 1.4% larger, respectively, than GM and WM

volumes measured from the T1 images. This analysis
shows that the pseudo-T1 method can make volume
measurements that compare well with the those obtained
by the previously published T1 method. In addition, it
demonstrates the utility of applying the FCs to either T1
parametric or TIW nonparametric 3D SPGR MR images.
This GM/WM comparison also illustrates the accuracy of
FC modeling of partial volume averaging effects between
images with greatly differing voxel volumes (due to differ-
ences in slice thickness).

Two important points relating to operator interactions
are emphasized. The first point is that tissue samples
taken by an operator from adjacent slices were consis-
tently within 5% of each other. This level of variation in
S, showed little effect on the measurement accuracy. Sec-
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Table 2
True and Calculated Gray Matter and White Matter Volumes in 1.5-mm Thick 3D SPGR Phantom Images

White Matter Gray Matter
Slice True Low Signal Mid Signal Hiih Signal True Low Signal Mid Signal Hi%lh Signal
Location Volume Phantom Phantom Phantom Volume Phantom Phantom Phantom
Superior 4.6 5.0 4.7 4.7 10.0 9.9 10.0 10.2
Middle 18.2 18.3 18.1 18.0 13.6 14.0 14.1 14.5 -
Inferior 16.2 16.6 16.2 16.1 18.4 18.5 18.8 19.2
Total 39.0 39.9 39.0 38.8 42.0 42.4 42.9 43.9

Note.—All volume measurements are in cubic centimeters. Phantom data sets simulate normalized human 3D SPGR MR data

with low, medium, and high signal values from a pool of 34 data sets.

ond, it was common to find subjects with constricted ven-
tricles, making the ROI placement more difficult and
partial volume averaging errors likely. Careful examina-
tion of the ventricles was required to choose a good lo-
cation for the CSF ROI. Usually, CSF ROIs contained 50
to 150 voxels. Tissue homogeneity was assessed by stan-
dard deviation determined from the tissue ROI. Typical
relative standard deviations within WM, GM, and CSF
ROIs, were 4.8%, 5.7%, and 21.7%, respectively.

This pseudo-T1 segmentation method was designed to
adapt to image intensity variations due to partial volume
averaging and intrinsic tissue inhomogeneities in a nor-
mal population. Variations in pixel values attributable to
RF nonuniformities were not directly modeled. However,
the ability of the method to accommodate shading arti-
facts was examined. WM measurements from 34 subjects
revealed that, on average, signal intensity values varied
by 2.4% from left to right and by 1.8% from anterior to
posterior. Measurements were gathered from four WM
ROIs placed immediately superior to the ventricles. Two
were placed in each hemisphere and were separated as
much as possible. WM was chosen because it had large
regions (this ensured that only WM was sampled) in both
hemispheres and in the anterior and posterior portions
of the image. WM measurements made from this slice lo-
cation were assumed to be representative of the bulk of
cerebral WM. Most important, the comparison between
the volume measurements, acquired from the same in-
dividual by both the T1 method and the pseudo-T1
method provided favorable quantitative evidence that the
shading artifacts encountered in the 3D SPGR image data
had minimal adverse effects on the segmentation. The
pseudo-T1 method was designed to adapt to signal vari-
ations that were primarily the result of intrinsic
variations in human subjects and partial volume aver-
aging effects. The results indicated that small local and
global variations from other effects were also well accom-
modated by the pseudo-T1 method.

The 3D SPGR pulse sequence used in this research was
selected by clinicians because it provided good WM/GM
contrast. This method is not tailored to a specific SPGR
protocol or even to the SPGR pulse sequence itself. The
original goal of this research was to apply the pseudo-T1
method to TIW MR images acquired from different pro-
tocols. The pseudo-T1 method will not work well with the
aggregate of TIW MR protocols. However, it does work
well with thinly sliced images because of their reduced
partial volume averaging. The correction steps, illus-
trated in Figure 2, compensated for tissue classification
errors in the segmented tissue images, in large part, be-
cause of this minimized partial volume averaging. Prelim-
inary segmentation results from SPGR images acquired
with different flip angles indicate that it may work well
with a significant subset of thin-sliced TIW MR protocols.

The final validation of the pseudo-T1 method was a
comparison of volume measurements acquired from MR
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data with those acquired from anatomical data. Cerebral
GM and WM volumes were estimated from human ana-
tomical data. Combining whole brain and cerebral cortex
volumes of approximately 1,400 and 700 cm® with esti-
mates of cortex and WM at 83% and deep GM structures
(putamen, globus pallidus, caudate nucleus, diencepha-
lon, and mesencephalon) at 5% produces the average val-
ues of 770 and 462 em? for GM and WM (19,20). Cerebral
GM and WM volumes from four human 3D SPGR data
sets were 625, 763, 728, and 731 cm?® and 352, 476, 381,
and 395 cm?, respectively. The average cerebral GM/WM
ratio for these four SPGR data sets is 1.77; the ratio es-
timated from average anatomical data is 1.67. GM/WM
ratios measured from phantom images were generally
within a few percent of the true GM/WM ratios (10.0
cm®/4.6 cm® =2.17, 13.6 cm3/18.2 cm® = 0.75, and 18.4
cin3/16.2 cm® = 1.14 for superior, middle, and inferior
phantoms).

The GM/WM ratios calculated from the 3D SPGR data
and from the anatomical data are much larger than the
near unity GM/WM ratios reported by Kikinis et al and
Rusinek et al (4,10). The fuzzy classification method pre-
sented in-this paper directly models both the intrinsic
inhomogeneity of tissues and the partial volume averag-
ing that occurs between tissues. We believe that the in-
corporation of these natural features into our segmen-
tation method accounts, in large part, for the difference
between the 1.77 GM/WM ratio and the near unity ratios
previously reported.

Conclusions

A fuzzy segmentation method, developed for T1 images,
was modified for use with T1-weighted 3D MR images.
The method was validated by using brain phantom data
sets derived from cryosection images of a human brain.
The pseudo-T1 method was also validated by direct com-
parison with the previously published T1 method. In ad-
dition, it was validated by comparison with anatomical
data. These validations emphasize that this segmentation
method is an accurate and precise tool for extracting WM
and GM volumes from T1-weighted 3D MR images of the
human brain.
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